摘要
链路预测是网络数据挖掘的一项基本任务,已有很多相关的研究成果。由于图神经网络研究的深入发展,使得相关的模型可以更加有效学习网络的重要特征,在链路预测等任务中取得了很好的预测效果。然而已有的图神经网络模型中仅聚合了节点的一阶邻居信息,未充分考虑邻居节点之间的拓扑结构特性。在此基础上,本文提出了基于高阶拓扑结构-模体的图神经网络链路预测模型。该模型采用自编码器结构,在编码过程中,通过模体构建节点的邻接矩阵,进而得到节点的模体邻域,依照每一类模体的邻域聚合邻居信息,通过非线性变换得到节点的表示,最后拼接每一类模体下节点的表示。然而由于不同的模体结构在网络中重要度有所不同,因此这里利用注意力网络给出表达不同模体的注意力权重,最后连接注意力网络给出节点的向量表示。在解码过程中,通过计算节点间的相似性重构网络。在几个引文合作者网络上的实验结果表明,该方法在两个指标上优于大多数基准算法,有效地提高了网络链路预测的准确度。
- 单位