摘要
现有的命名实体识别方法主要是将句子看作一个序列进行处理,忽略了句子中潜在的句法信息,存在长距离依赖问题。为此,该文提出一种基于依存关系的命名实体识别模型,通过在输入数据中增加依存树信息,改变双向长短时记忆网络的层间传播方式,以获得单词在依存树中的子节点和父节点信息,并通过注意力机制动态选择两者的特征,最后将特征输入到CRF层实现命名实体标注。实验表明,该方法较BiLSTM-CRF模型在性能上得到了提高,且在长实体识别上优势明显。在OntoNotes 5.0 English和OntoNotes 5.0 Chinese以及SemEval-2010 Task 1 Spanish上的F1值分别达到了88.94%、77.42%、84.38%。
- 单位