为了降低文本特征维度,提高聚类准确度,提出改进灰狼优化多阶段特征选择与特征提取算法。结合平均绝对差和平均中位数作相关特征选择,利用合并/交叉融合特征子集;根据余弦相似性作特征提取,得到初选特征子集;基于初选特征子集,设计改进二进制灰狼优化算法(IBGWO)求解最优特征子集,利用累计词频和文档频率定义适应度,引入反向学习、非线性收敛系数衰减及精英反向学习机制,提升灰狼优化寻优性能。结果表明,该算法的聚类准确率、召回率及F1值指标优于同类算法,可以有效降低特征维度,提升聚类效率。