摘要

针对传统方法对路面干湿状态识别分类正确率较低的情况,提出了基于迁移学习的路面干湿状态识别方法。利用深度卷积神经网络强大的特征学习和表达能力,自动学习干湿路面的特征,并采用迁移学习的方法将Inception-v3模型在ImageNet图像数据集上学习得到的知识深度迁移至路面干湿状态识别任务。实验结果表明,所提算法在测试集上测得的分类准确率约为94.5%,与非迁移学习算法和基于底层视觉特征识别学习的算法相比,具有更高的准确性和良好的鲁棒性,以及较强的泛化能力。