摘要

SIMPAT将图像重建思想引进储层地质建模领域,借助于弱化概率的相似性判别指标,用最相似地质模式替换待估点处的数据事件完成预测。当模型较大且数据样式较多时,海量的数据样式相似度计算使得SIMPAT的计算效率较低。为了有效平衡多点地质统计建模算法效率和内存的矛盾,基于SIMPAT算法,提出基于p-stable局部敏感哈希的多点地质统计建模算法LSHSIM,该方法使用局部敏感哈希将数据样式的特征向量映射到哈希表。建模时从哈希表里取出与数据事件的特征向量具有相同哈希值的数据样式,用最相似的数据样式替换覆盖待估区的数据事件完成建模。利用实例对比新算法与SIMPAT等现有方法的结果表明,LSHSIM算法计算效率高,并节省了内存空间,对算法的关键参数进行了敏感性分析、非条件和条件模拟,能较好再现训练图像的先验地质模式。