摘要
针对传统的轨迹身份识别存在的特征选择主观性强、精度有限等问题,本文提出了一种融合双向循环神经网络模型(ConvGRU-Bidir)。首先采用一维卷积和一维池化压缩轨迹数据,提取高维特征;然后采用双向GRU,分别从时间正序和时间逆序学习轨迹特征,最终实现用户身份ID识别。研究采用GeoLife轨迹数据集,来自122名用户的10 837个轨迹样本参与模型训练及测试。结果表明,本文提出的模型对于异步轨迹数据的身份识别精度达97.28%,相比现有方法精度至少提高30%,由此证明了深度学习在此类问题上的可行性和有效性。
-
单位重庆市勘测院