摘要
为从无人机遥感影像中准确识别烟草,实现植株定位与计数,以雪茄烟草植株为研究对象,提出一种新的深度学习模型。区别于传统的利用检测框识别目标,本文模型利用少量的关键点学习烟草中心形态学特征,并采用轻量级的编、解码器从无人机遥感影像快速识别烟草并定位计数。首先,提出的模型针对烟草植物形态学特点,通过中心关键点标注的方法,使用高斯函数生成概率密度图,引入更多监督信息。其次,对比不同主干网络在模型中的效果,ResNet18作为主干网络时平均精度大于99.5%,精度和置信度都高于测试的其他主干网络。而MobileNetV2在CPU环境下达到运行效率最优,但平均置信度相对较低。使用损失函数Focal Loss与MSE Loss结合的Union Loss时,平均精度大于99.5%。最后,利用不同波段组合作为训练数据,对比结果发现使用红边波段更有助于模型快速收敛且能够很好地区分烟草和杂草。由于红边波段与植株冠层结构相关,使用红边、红、绿波段时平均精度达到99.6%。本文提出的深度学习模型能够准确地检测无人机遥感影像中的烟草,可为烟草的农情监测提供数据支持。
- 单位