摘要
受全球气候变化与人类活动影响,径流序列愈发呈现出非稳态与非线性特征,为降低由此而引发的预报误差,充分发挥不同模型对提高径流预测精度的优势,针对传统径流预报模型的单一性,以干旱区典型内陆河玛纳斯河为例,采用经验模态分解(EMD)提取径流序列中具有物理含义的信号,得到不同时间尺度的多个固有模态函数(IMF)及1个趋势项,利用ARIMA模型与GRNN模型分别对不同时间尺度的IMF分量进行模拟,分析径流未来变化趋势。运用多元线性回归法、Spearman相关系数法、平均影响值法筛选大气环流因子作为神经网络模型的输入项,根据子序列的局部频率特点构建组合模型。最后将各IMF分量的预测结果重构,得到径流的最终预测值。单一评价指标无法全面评价模型精度,本文通过构建TOPSIS评价模型对径流预测模型进行定量评估,客观评价模型优度。结果表明:EMD分解能有效提取径流序列中隐含的多时间尺度信号,由趋势项可知玛纳斯河径流量总体呈上升趋势;EMD分解可提高ARIMA模型25%的合格率,但对于高频率分量IMF1、IMF2、IMF3,ARIMA模型的相对误差达到70%以上,预测结果不理想;经过筛选预报因子可有效提高GRNN模型精度,其中MIV法筛选的预报因子最适合玛纳斯河,与EMD-ARIMA组合后的GRNN模型的合格率最高,TOPSIS模型得分也最高。预测结果可作为水资源规划与调度的科学依据,建模思路也可为优化径流预测模型提供新途径。
-
单位流域水循环模拟与调控国家重点实验室; 中国水利水电科学研究院; 石河子大学; 建筑工程学院