摘要

针对现有VP型倾斜仪故障诊断主要依靠人工经验和诊断流程较为复杂的问题,提出以互补集合经验模态分解(complete ensemble empirical mode decomposition, CEEMD)多尺度近似熵和二进制蝙蝠算法(binary bat algorithm, BBA)优化SOM神经网络参数的VP型倾斜仪故障诊断新方。首先,将归一化后的仪器故障信号进行CEEMD分解,对6阶本征模态函数(intrinsic mode function, IMF)求取多尺度近似熵值;然后将网络输入法按比例分为训练集和测试集,以训练集的识别率为适应度函数,应用二进制蝙蝠算法(binary bat algorithm, BBA)优化SOM神经网络的竞争层维数和网络训练次数;最后应用上述得到的BBA-SOM网络模型对倾斜仪故障特征数据进行辨识。实验表明:CEEMD多尺度近似熵判据对倾斜仪故障特征的区分效果符合预期;相对于朴素贝叶斯、AdaBoost集成学习与LDA等学习模型,BBA-SOM模型可以准确进行故障诊断;该方法对实现VP型倾斜仪故障的自动诊断有重要现实意义。

  • 单位
    河北省地震局; 中国地震局地震研究所