摘要

协同过滤算法的用户评分与用户偏好之间可能存在偏差,导致推荐准确度降低。为此,提出一种基于归因理论的用户偏好提取算法。基于用户行为的一致性、区别性和正负偏好信息提取用户偏好。融合偏好相似性与评分相似性以获得更优的最近邻集合,计算用户对未评分项目的预测评分值。在通用数据集Movies Lens-1M上进行实验,结果表明,在10%偏好相似性与60%评分相似性的融合条件下,该算法的推荐准确度取得最优值,且优于传统协同过滤算法以及HU-FCF、BM/CPT-V等改进算法。

全文