摘要
目的针对成对旋转不变的共生局部二值模式(PRICoLBP)算法对图像光照、旋转变化鲁棒性较差,且存在特征维度过大的问题,提出了一种可融合多种局部纹理结构信息的有效特征——增强成对旋转不变的共生扩展局部二值模式。方法首先,对图像各像素点的邻域像素点灰度值进行二值量化得到二值编码序列,并不断旋转二值序列得到以不同邻域点作为编码起始点对应的LBP值;然后,分别利用极大、极小LBP值对应的邻域起始编码点和中心像素点确定两个方向矢量,并沿这两个方向矢量在两个不同尺度图像上选取上下文共生点;其次,利用扩展局部二值模式(ELBP)算法的旋转不变均匀描述子来提取上下文共生点对的中心像素灰度级、邻域像素灰度级及径向灰度差异特征间的相关性信息;最后,用上下文共生点对的特征直方图训练卡方核支持向量机,检测纹理图像类别。结果通过对Brodatz、Outex(TC10、TC12)、Outex(TC14)、CUReT、KTH-TIPS和UIUC纹理库的分类实验,改进算法的识别率比原始的PRICoLBP算法识别率分别提高了0.32%、0.57%、5.62%、3.34%、2.1%、4.75%。结论利用像素点LBP特征极值对应的起始编码序列来选取上下共生点对,并用ELBP算法提取共生点对局部纹理信息,故本文方法能更好描述共生点对间的高阶曲率信息及更多局部纹理信息。在具光照、旋转变化的Outex、CUReT、KTH-TIPS纹理库图像分类实验中,所提方法比原始PRICoLBP算法取得了更高的识别率。实验结果表明,改进算法相比于原始算法能在较低的特征维度下对图像光照、旋转变化具有较好的鲁棒性。
-
单位中航光电科技股份有限公司; 西南交通大学