针对天然气燃气轮机污染物预测难度大的问题,该文基于数值模拟方法研究了燃烧室头部旋流数、分级面积比、分级轴向距离等典型因素对污染物生成的影响,在此基础上提出了基于神经网络的燃气轮机污染物预测模型。研究结果表明:头部旋流数、分级面积比增大会导致燃烧室内部最高温度升高,NOx排放增多,而CO排放无明显变化;所构建的神经网络预测模型预测结果与数值模拟结果吻合,其中预测NOx平均误差为4.58%, CO平均误差为0.97%,证实了神经网络模型预测燃气轮机污染物排放可行且准确。