摘要
针对不同故障类别齿轮的故障信息难以有效获取、齿面多类故障难以准确聚类的问题,提出一种基于特征处理的最大方差展开(Maximum Variance Unfolding,MVU)维数简约的齿轮故障诊断模型。首先对获取的振动信号进行最小熵反卷积(Minimum Entropy Deconvolution,MED)预处理,将高低频段进行分离并筛除不确定信号,并在多域上提取信息熵作为特征指标;而后,利用样本点分布矩阵筛选高效表征特征指标并构建高维特征空间,并利用改进的MVU算法对其进行维数简约,获取低维的真实子空间;最后,将其输入到超球多类支持向量机中进行超球构造与分类识别。通过实验数据的分析对比验证模型的有效性。