摘要
光伏功率预测是实现能源优化分配与电网稳定运行的关键基础。然而传统方法中数据预处理不精细以及预测算法对数据挖掘不到位的问题,往往致使准确率不足。针对上述问题,该文提出基于聚类集成和预测集成的双集成光伏功率预测方法,以异质集成的方式提升了气象分类和功率预测的精度。首先,基于重标记法和投影法,构建了融合Kmeans、高斯混合模型(gaussianmixturemodel, GMM)、AGNES(agglomerativenesting)和BIRCH(balancediterative reducing and clustering using hierarchies)4种异质算法的聚类集成框架,并依据滑动时间窗口筛选离群日,建立典型气象模型。其次,基于Stacking集成学习框架,在采用k折交叉验证法规避过拟合的基础上,构建由门控循环单元(gated recurrent unit,GRU)、随机森林(random forest,RF)、XGBoost和Light GBM组成的预测集成模型,深度挖掘光伏数据的潜在规律。最后以澳大利亚某光伏电站为例进行仿真,结果表明双集成功率预测的准确性比传统模型有较大提升,证明了聚类集成和预测集成的有效性。
- 单位