摘要

深度学习为心律失常的自动分类提供了一种有效的方法,但在临床决策中,纯数据驱动的方法以黑盒形式运行,可能会导致不良预测结果。将领域知识与深度学习相结合是一种很有前景的解决方案。本文开发了一个灵活且可扩展的框架,用于集成领域知识与深度神经网络。该模型由深度神经网络和知识推理模块组成,深度神经网络用于捕捉输入数据的统计模式,知识模块用于确保与领域知识的一致性。这两个组成部分经过交互训练,以实现两种机制的最佳效果。实验表明,领域知识可以较好地改善神经网络的预测结果,从而提高预测精度。

  • 单位
    宁波工程学院