摘要

针对传统工业中人工分拣效率低和成本高等问题,设计了基于机器视觉的机械臂智能分拣系统。通过摄像头采集图像并对图像进行灰度滤波操作后,使用SOA-OTSU算法对图像进行阈值分割,对目标区域进行Blob连通域分析,实现对工件的识别与定位。运用标准D-H参数法建立三自由度机械臂模型,将工件位置坐标代入逆运动学方程,解得每个连杆的关节转角,将其转化为机械臂步进值,并通过串口通信方式发送给Arduino,由Arduino控制机械臂完成工件的抓取与放置。实验结果表明,该方法提高了分拣系统抓取的准确性。

  • 单位
    青岛大学; 自动化学院; 工业控制技术国家重点实验室