摘要

下一代蜂窝网络在网络管理和服务供应场景中发挥着重要的作用,对移动网络流量的预测分析正变得越来越重要。文中针对城市蜂窝流量的预测,设计了一个基于多通道稀疏长期短期记忆网络(Long Short-Term Memory, LSTM)的流量预测模型。相对于多层感知器网络或其他神经网络结构,LSTM非常适合处理时间序列数据问题。所设计的多通道方式能够有效捕获多源网络流量信息,其稀疏方式使其自适应地对不同的流量时间节点赋予不同的权重,提高了深度神经网络模型捕捉重要特征的能力。在意大利米兰城市蜂窝流量数据上进行了实验,评估了所提方法对单步和多步预测的性能。实验结果展示出所提方法比基准方法更精准。此外,实验还报告了蜂窝流量中不同持续时间采样设置对LSTM网络模型的可存储长度及预测精度的影响。