摘要

电站与传动系统是半潜式平台电力的重要来源和主要输送通道.由于电站与传动系统构成复杂,且故障样本少,一般可靠性评估方法无法准确分析出其系统可靠性随时间的变化情况.提出一种结合状态转移抽样与BP神经网络的时变可靠性分析模型,通过状态转移抽样为BP神经网络的时变可靠性计算提供足够的训练数据,并以BP神经网络高效的学习能力提升状态转移抽样在复杂系统可靠性分析中的计算效率和精确度.以D90半潜平台为工程背景,收集整理了电站与传动系统的故障数据,通过该模型计算了系统的三项可靠性指标,并验证了在相同抽样间隔下该模型比单一状态转移抽样法的准确性更高;定量分析了电站与传动系统可靠性的时变规律,为电站与传动系统的设计优化与维修检测提供参考依据.