摘要

针对无人机的着陆控制问题,研究了一种基于深度强化学习理论的旋翼无人机着陆控制算法。利用深度强化学习训练生成无人机智能体,根据观测结果给出动作指令,以实现自主着陆控制。首先,基于随机过程理论,将旋翼无人机的着陆控制问题转化为马尔可夫决策过程。其次,设计分别考虑无人机横向和纵向控制过程的奖励函数,将着陆控制问题转入强化学习框架。然后,采用深度Q网络(deep Q network, DQN)算法求解该强化学习问题,通过大量训练得到着陆控制智能体。最后,通过多种工况下的着陆平台进行大量的数值模拟和仿真分析,验证了算法的有效性。