摘要

不同类型的声音对城市居民的身心健康质量影响不同,将城市声音精准的分类有利于对其进行有效的评价,从而促进对城市声音的管理。深度学习在语音识别方面已有所应用,其中循环神经网络(RNN)表现最为突出。由于基本RNN存在明显的梯度消失、网络损耗大、准确率低等问题,应用改进的RNN对城市背景噪声进行分类。采用长短期记忆神经网络(LSTM)和门控循环单元(GRU)神经网络,构建深度循环神经网络模型,通过城市记录的公共数据集UrbanSound8K对搭建的深度神经网络的准确性进行测试分析。模型基于梅尔频率倒谱系数的基准实现,得出的结果与基本RNN相比有明显的提升。