摘要
针对复坡堤越浪量的计算问题,提出了采用随机森林算法预测越浪量的方法。首先,通过对欧洲CLASH数据集进行筛选,挑选出符合复坡堤越浪量预测的数据;其次,对数据做无量纲化处理,建立以随机森林为基础的复坡堤越浪量预测模型,并通过网格搜索(GridSearchCV)方法对模型进行调参以改善模型的性能;最后,利用决定系数R2来评估模型的精度,并将随机森林模型与集成神经网络模型做了预测能力的对比,同时还给出了随机森林模型各个特征参数对预测精度的重要性。结果显示,随机森林模型的决定系数为92.7%,集成神经网络模型的决定系数为87.7%,表明随机森林模型对越浪量具有更强的学习和预测能力。通过对特征重要性的分析,墙顶高程对模型预测精度的影响最大,堤顶高程次之,堤脚宽度影响最小。
-
单位天津理工大学; 交通运输部天津水运工程科学研究院