摘要

像传统机器学习一样,样本的不平衡分布会影响深度学习分类器的预测能力,在语音情感识别环境下,情感数据的不平衡分布是一种常态。基于卷积循环神经网络和注意力模型,提出一种随机平均分布的集成学习方法(Redagging),用来消除样本的不平衡分布。Redagging按照机会均等原则,等概率地把训练样例随机放入子训练样本,通过降低样例重复率提升基分类器的性能,进而增强综合分类器的预测能力。在IEMOCAP和EMODB情感数据库的实验表明,从未加权平均召回率和F1值两个方面,Redagging都优于Bagging和其他不平衡学习方法,验证了其有效性。