基于改进Attention U-Net的胆囊自动分割模型研究

作者:尹梓名; 孙大运; 任泰; 周雷; 李永盛; 王广义; 王传磊; 曹宏; 刘颖斌*; 束翌俊*
来源:北京生物医学工程, 2021, 40(04): 346-376.

摘要

目的基于多尺度融合注意力机制,提出改进Attention U-Net的胆囊自动分割模型,提高胆囊自动分割模型的性能,以辅助医生进行临床诊断。方法首先选取2017年1月—2019年12月上海交通大学医学院附属新华医院普外科、吉林大学白求恩第一医院肝胆胰外一科和吉林大学中日联谊医院普外科收治的88例病理诊断明确的胆囊癌患者、28例慢性胆囊炎胆囊结石患者和29例健康对照,构建胆囊分割数据集,然后通过对医学常用深度学习图像分割方法U-Net和Attention U-Net进行分析,提出基于多尺度融合注意力机制改进的Attention U-Net方法,并设计实验对3种方法进行对比评估。结果提出的改进Attention U-Net方法在验证集上的交并比阈值(IoU)分数、Dice系数、检测精度(Precision)和召回率(Recall)分别为0.72、0.84、0.92、0.79,全部优于传统U-Net和Attention U-Net方法。结论本文提出了基于多尺度融合注意力机制改进的Attention U-Net模型,其性能优于U-Net和Attention U-Net,证明了本方法中改进的注意力机制可以很好地改善U-Net模型在胆囊影像上的分割结果。

  • 单位
    上海理工大学; 上海交通大学医学院附属仁济医院; 上海交通大学医学院附属新华医院; 吉林大学; 吉林大学中日联谊医院; 癌基因与相关基因国家重点实验室