摘要
针对传统Faster R-CNN(Region-Convolutional Neural Networks)检测钢材表面小目标性缺陷性能差的问题,提出了一种基于改进Faster R-CNN的钢材表面缺陷检测方法。首先引入导向锚点候选区域网络(GA-RPN:Guided Anchoring Region Proposal Network)预测锚点的位置和形状,设计可调节机制解决网络锚点形状偏移量超出感兴趣区域的问题,从而解决无关特征的影响;其次,提出多任务FPN(Feature Pyramid Network)结构缩短高层特征定位信息映射路径,并能解决相邻层特征融合再采样的不充分特征融合,提高小目标检测性能。将改进的Faster R-CNN算法应用于钢材表面缺陷检测。仿真结果表明,改进的网络其召回率与准确率都得到提高,具有更好的检测性能。
- 单位