摘要

为提高基于机器视觉的棉花异性纤维在线分类的精度和速度,提出了一种基于改进遗传算法的特征选择方法。采用分段式染色体管理方案实现对多质特征空间局部化管理;利用分段交叉和变异算子避免出现无效染色体,提高搜索效率;通过自适应调整交叉和变异概率实现强搜索能力和快收敛速度的动态平衡。实验结果表明,该方法比基本遗传算法搜索能力更强、收敛速度更快,所得最优特征子集较小,更适用于棉花异性纤维在线分类。