摘要
针对海量气象观测数据间存在大量的物理噪声、与气温无关的冗余特征以及时间相关性,提出了一种将一维卷积神经网络(1DCNN)和长短期记忆神经网络(LSTM)相结合的多信息融合气温预报方法。首先,运用差分法对气象观测数据进行预处理,得到平稳时间序列数据;其次,运用1DCNN提取与气温变化相关的特征变量作为神经网络模型的输入变量;最后,运用1DCNN和LSTM构建多信息融合气温预报模型1DCNNLSTM,并以云南省昆明市历史气象观测数据为例,与传统的LSTM、1DCNN和反向传播神经网络(BP)对未来24小时的逐时气温预报进行了比较研究。研究结果表明,1DCNN-LSTM的均方根误差(RMSE)相较于LSTM、1DCNN和BP最大降低了5.221%、19.350%和9.253%,平均绝对误差(MAE)最大降低了4.419%、17.520%和8.089%。为气温的精准预报提供了参考依据。
-
单位宁波工程学院; 昆明理工大学