摘要

针对传统基于机器学习的网络流量分类方法中样本标签的正确性会直接影响结果精度的问题,提出一种噪声容忍的网络流量分类方法。该方法基于深度残差网络的方法,首先,对网络流量数据进行归一化以及数据增强处理后映射成灰度图片,并对其样本标签进行不同程度的加噪;然后,基于Res2Net深度残差神经网络设计适用于网络流量噪声干扰下的维度模块,构造可以适用于流量标签噪声容忍的深度神经网络模型。基于公开数据集的实验结果表明,与传统的噪声容忍分类算法相比,基于改进的深度残差神经网络在不同噪声率下均提升了分类精度,并且在高噪声率下提升更为显著。