摘要

目的探讨鼻咽癌放射治疗中的危及器官(OARs)的自动分割的准确性。方法在自动分割模型研究中,经CT扫描和医生手动分割后,选取147例鼻咽癌患者的CT图像及其对应勾画的OARs结构,并对其进行完全随机化分组,分成训练集(115例)、验证集(12例)、测试集(20例)。采用自适应直方图均衡化对CT图像进行预处理。利用端到端训练提高建模效率,实现一种基于三维Unet的改进网络(AUnet),将器官大小作为先验知识引入卷积核大小设计中,使网络能自适应地提取不同大小器官的特征,从而提高模型的性能。比较自动与手动分割的DSC(Dice Similarity Coefficient)系数和豪斯多夫(HD)距离以验证AUnet网络的有效性。结果测试集的平均DSC和HD分别为0.86±0.02和4.0±2.0 mm。除视神经、视交叉外,AUnet与手动分割结果无统计学差异(P>0.05)。结论引入自适应机制后,AUnet能较为准确地实现基于CT图像对鼻咽癌的危及器官的自动分割,临床应用中可大幅度提高医生的工作效率及分割的一致性。