摘要
为提高算法对车辆检测的准确性,解决原有算法在复杂交通场景下对车辆检测效果不佳的问题,提出一种基于注意力机制和改进密集连接网络结构的车辆检测方法。首先在过渡层中使用SoftPool整合密集块之间的特征信息;其次通过轻量化通道注意力机制加强有效通道特征的表达,将其作为Darknet-53的深层特征提取层;引入CIOU损失作为模型的边界框位置预测损失项,使用深度可分离卷积缩减模型体积;与原算法相比mAP值提高2.6%,模型体积缩减为原来的42%,实验证明本算法在复杂交通场景下具有良好的检测性能。
- 单位