摘要
海雾无论在海上还是在沿岸地带,都因其恶劣的能见度对交通运输、海洋捕捞和海洋开发工程以及军事活动等造成不良影响,因此对于海雾的实时监测和预报就显得尤为重要。本文提出了基于深度学习的静止气象卫星多通道图像融合分割算法,使用D-LinkNet深度卷积神经网络语义分割算法模型对黄渤海海域范围的16通道、空间分辨率为0.5 km的Himawari-8卫星数据进行研究。分别采用均交并比(mIOU)以及观测值检验作为评价指标,在测试集上的mIOU为0.9436,并且用卫星测试数据结果与海上观测数据结果进行对比,得出雾区准确率(检测有雾且真实有雾/检测有雾)为66.5%,雾区识别率(检测有雾且真实有雾/(真实有雾-云覆盖))为51.9%,检测正确率(检测正确/总样本)93.2%。本文提出的方法能为海雾监测提供一个可靠的参考。
- 单位