摘要

近年来,由于帕金森病(PD)的临床复杂性与多模态磁共振(MR)图像的高维性,如何有效挖掘图像中特异性标记PD的影像生物标志物、建立高效的PD计算机辅助诊断(CAD)模型是研究中极具挑战性的问题。综述目前国内外研究进展,进一步分析MR多模态特征提取、特征选择、分类器模型等传统机器学习方法建立CAD模型的关键技术,并简要概述基于深度学习方法在早期PD分类诊断中的应用。指出基于多模态MR图像,采用机器学习或深度学习方法构建CAD模型,能够客观、准确地识别PD患者,对提高早期PD诊断的准确性具有很大价值和应用前景。今后研究应更深入挖掘多模态MR图像中的潜在标记PD的影像生物指标,开发更高阶的CAD模型,以辅助早期PD的临床智能诊断。