摘要
目标检测技术广泛应用于各个领域,其目的是通过对输入图像中的物体和场景进行信息的特征提取,从而识别图中感兴趣的目标。为了减少作业人员在建筑工地作业时因未佩戴安全帽造成的人员伤亡事故,文章提出了一种基于深度学习的建筑工地安全帽目标智能检测方法,检测建筑工地人员安全帽佩戴情况,提高行业安全生产效率。本研究通过安全帽数据集进行先验框设计,采用k-means算法获得本数据集的先验框维度;将用于训练的图片进行拼接实现了数据集的增强;用CIOU代替回归损失增加预测精度,基于YOLOv4的基础网络进行特征提取,获得不同尺度的特征层,将获得的特征层经过深层次特征金字塔进行特征融合,再输入分类回归层进行回归预测。
-
单位武汉商学院; 机电工程学院; 天门职业学院