摘要
在现代通信系统中,回波与混响常损害通信语音的质量和可懂度。为克服回波与混响的负面影响,本文提出了一种基于深度学习的两阶段联合声学回波和混响抑制系统。系统先用基于理想比值掩蔽的模型去除与目标信号不相关的声学回波;然后用一个基于"隐掩蔽"的谱映射模型去除与目标信号强相关的混响干扰;最后联合训练两阶段模型以获得更好的系统性能。一系列不同声学环境下的实验结果表明,本文所提出的系统可显著地消除回波与混响干扰,从而极大地增强了目标语音的语音质量与可懂度。
- 单位
在现代通信系统中,回波与混响常损害通信语音的质量和可懂度。为克服回波与混响的负面影响,本文提出了一种基于深度学习的两阶段联合声学回波和混响抑制系统。系统先用基于理想比值掩蔽的模型去除与目标信号不相关的声学回波;然后用一个基于"隐掩蔽"的谱映射模型去除与目标信号强相关的混响干扰;最后联合训练两阶段模型以获得更好的系统性能。一系列不同声学环境下的实验结果表明,本文所提出的系统可显著地消除回波与混响干扰,从而极大地增强了目标语音的语音质量与可懂度。