摘要
现有的深度估计方法通常采用编码器-解码器结构,存在图像不同区域对深度特征的需求和深度估计的难度的差异性问题,提出递归特征融合的单目深度累积估计方法.在编码器阶段,递归特征融合通过递归使用门控循环单元筛选融合多尺度特征,提取适应图像不同区域需求的特征以替代跨层连接;在解码器阶段,深度累积估计将深度重建过程分解为多层,不同层分别预测不同细粒度的深度图,最后累积生成深度估计结果.与DPT, BTS, DORN等方法相比,在2个基准数据集KITTI和NYU Depth V2上取得了具有竞争力的结果, Abs Rel分别达到了0.058和0.107,RMSE分别达到了2.411和0.386.
- 单位