摘要
核可能性C-均值(KPCM)聚类算法将核方法引入可能性聚类中,使其对超球体、含噪声和奇异点的数据能进行有效聚类,但存在可能性聚类的中心重合问题。因此,将β-截集引入KPCM聚类算法中,通过产生聚类核修改部分样本数据的典型值,以改善类间关系。同时,提出了一种基于截集门限的核可能性C-均值(C-KPCM)聚类算法,克服了KPCM聚类算法一致性聚类的缺陷。结合图像的非局部空间信息,利用自适应中值滤波算法可自适应调节滤波半径的特性,产生新的模糊因子,并将其加入C-KPCM聚类算法的目标函数中,提出了基于非局部空间信息的核可能性C-均值聚类算法,增加了强噪声干扰下聚类算法的鲁棒性,仿真结果验证了本算法有效性。
-
单位通信与信息工程学院; 西安邮电大学