摘要
为了实现高效的建筑火灾应急救援疏散,分析了将目标检测技术应用于建筑火灾应急处置的可能性.将目标检测算法应用于火灾预警阶段,将Transformer、卷积神经网络CNN和轻量级注意力机制模块CBAM相结合,对火焰和烟雾局部和全局特征进行提取,提高目标检测算法的精度并实现对火灾发生位置的快速定位.提出一种用于路径搜索的改进的蚁群算法,对启发函数和信息素挥发系数进行改进.在案例中,建立栅格图模型,结合定位信息,通过仿真模拟的方式验证方法的有效性.结果表明:相比与YOLOX算法,YOLOX-Swin模型平均精度提高1.5%;改进蚁群算法降低了传统蚁群算法的搜索范围,提高模型的收敛速度,有效避免了模型陷入局部最优解的困境.将火灾预警和火灾人员疏散相结合,建立完整的建筑火灾应急处置方案.
-
单位东南大学; 土木工程学院