摘要

针对电子装备模拟电路故障诊断过分依赖专业技术人员和诊断专家的不足,提出利用信息融合技术,综合极限学习机(ELM,Extreme Learning Machine)、支持向量机(SVM,Support Vector Machine)以及BP(Back Propagation)神经网络等智能故障诊断模型,对模拟电路软故障进行诊断的故障诊断方法。通过对不同模型分别输入不同频率的电压信号,得到每个模型的诊断结果;采用DS(Dempster-Shafe)证据理论对每个模型诊断结果的可信度进行评估,确立每个模型诊断结果的组合置信度。通过不同模型诊断结果的决策层融合,最终获得诊断结果。以某型装备滤波电路的故障诊断为例,多模型融合诊断结果的准确率比单一方法模型的诊断准确率有了明显的提高,证明了该方法的有效性。

  • 单位
    中国人民解放军陆军工程大学