摘要
传统特征选择算法没有考虑特征之间的关联性,并且基于类别平衡假设,在不平衡问题上偏向多数类而忽略少数类。针对以上不足,本文综合考虑特征相关性与不平衡性,提出一种基于类区分度的高维不平衡特征选择算法CDHI,该算法通过k-means进行特征聚类,并计算簇中每个特征的类区分度,利用类区分度对聚类簇中特征进行重要性排序,然后选择各簇中类区分度较高的特征组成特征子集,达到去除高维特征冗余与处理不平衡数据的双重目的。实验结果表明,与传统特征选择方法相比,CDHI算法有效降低了特征空间的维度,提高了少数类的识别率。
- 单位