摘要

基于知识图谱的推荐算法在多个领域取得了较好的效果,但仍然存在一些问题,如不能有效提取知识图谱中实体关系标签中的特征,推荐准确率会降低。因而提出将网络嵌入方法 (network embedding)用于旅游知识图谱的特征提取,使得特征的提取更加充分。通过对旅游知识图谱中不同标签的属性子图独立建模,利用深度学习模型挖掘游客及景点等图节点语义特征,进而获得融合各个标签语义的游客和景点特征向量,最终通过计算游客和景点相关性生成景点推荐列表。通过在真实旅游知识图谱上的实验,验证了利用网络嵌入方法对知识图谱中数据建模后,可以有效提取节点的深层特征。