摘要

动态鲁棒优化问题广泛存在于各个领域,且难以求解。动态鲁棒粒子群优化(PSO)算法是一种有效的求解方法。但是,现有算法存在全局搜索能力弱和无法对个体进行综合评价的问题。为有效求解动态鲁棒优化问题,在研究的基础上提出一种混合差分进化的动态鲁棒粒子群(DRPSO-DE)算法。该算法不仅使用差分进化(DE)算法的变异策略提升粒子群算法的全局搜索能力,还提出一种综合指标来对种群个体进行评价。此外,为提高动态鲁棒粒子群算法的搜索效率,采用一种基于排序的选择策略挑选最佳个体,并将它们用于指引种群进化。为验证DRPSO-DE的有效性,选取五个动态标准测试函数对其进行测试。从试验结果来看,所提出算法的整体性能要优于原有算法,能够有效求解动态鲁棒优化问题。

全文