摘要

质差用户识别是降低用户投诉率、提升用户满意度的重要环节。针对当前电信网络系统中业务感知相关的大量结构化及非结构化数据难以有效标注、质差用户标签不完备、现有监督学习模型训练样本不均衡而导致质差识别率低的问题,采用改进自训练半监督学习模型,利用少量满意度低分和投诉用户作为质差用户标签对网络数据进行标注,并通过标签迁移对大量未标注数据进行训练识别质差用户。实验表明,相比于识别准确率高但是训练成本高的全监督学习和识别准确率低的无监督学习,半监督学习可以充分利用无标签样本数据进行有效训练,保证较低训练成本的同时显著提升质差用户识别准确率。

  • 单位
    中国移动通信有限公司研究院