摘要
随着互联网技术的迅猛发展,网络已成为社会舆情的重要阵地,而网络舆情是食品风险预警的一个方向。传统舆情预警模型在指标体系的基础上结合反向传播神经网络(back propagation neural network, BP)等神经网络模型进行分析,存在运行不稳定、预测精度不高等问题。为了解决这些问题,采用具有较高预测精度的长短记忆(long short-term memory, LSTM)网络算法,在网络事件指标体系的基础上引入层次分析法(analytic hierarchy process, AHP)并融合食品安全事件指标数据,将融合结果作为LSTM的期望输出,以建立更为稳定、精度更高的风险预警模型AHP-LSTM。实验结果表明,与传统模型相比,AHP-LSTM对于事件指标数据具有较强的处理能力和较高的预警精度。因此构建基于AHP-LSTM的食品安全事件预警方法,可为相关部门有效防范和管理食品安全网络事件提供一定的理论依据和数据支撑。
- 单位