基于邻域自适应注意力的跨域融合语音增强

作者:岳焕景; 多文昕; 杨敬钰*
来源:湖南大学学报(自然科学版), 2023, 50(12): 59-68.
DOI:10.16339/j.cnki.hdxbzkb.2023298

摘要

基于深度学习的语音增强方法可分为时域方法和频域方法两类,这两类方法各有优点.为了综合利用时、频两域方法的优点,提出了基于邻域自适应注意力的跨域融合语音增强模型.该模型能够同时对输入的波形和频谱进行增强,并对时域和频域的增强结果进行跨域融合得到最终增强结果 .为了利用时域增强结果与频域增强结果的信息互补特性,提出使用信息交流模块来实现两域增强结果的互补提升.为了提高时域增强模型与频域增强模型的特征提取能力,充分利用时域和频域的信号特点,进一步提出了邻域自适应注意力模块.该模块依据输入信息自适应选择汇聚具有不同邻域窗口的局部自注意力模块,进而高效利用不同尺度下的平稳特征.实验结果表明,所提邻域自适应注意力模块和时频域的信息交流与融合模块,可有效利用波形与频谱的互补特性,进一步提升增强效果.

全文