摘要

本文基于工程实测数据,在分析其序列性质的基础上,提出了基于时序神经网络方法的盾构掘进速率预测方法,并在天津地铁9号线这一实际工程算例中对所提出的方法的有效性进行验证,讨论比较了Simple RNN、LSTM与GRU这3种不同时序神经网络算法的掘进速率预测表现。结果表明,本文提出的基于时序神经网络的盾构掘进速率预测方法能够较好地分析掘进中积累的工程实测数据中的序列性质,从而对前方掘进速率进行预测,且比具有"门"性质的LSTM与GRU方法表现出了更好的预测效果。

全文