摘要

玉米病害分类是一个具有挑战性的问题,因为病害的形态和颜色等特征相似,使得分类难度较大。文章基于深度学习技术,对玉米病害进行分类研究,提出了一种名为CBAM_ResNet34的卷积神经网络模型。该模型在ResNet34基础上加入了CBAM注意力模块,可以更好地提取玉米病害特征,以提高模型的分类性能。本文使用公开玉米病害数据集,共包含8种类别,通过数据增强技术进行数据扩充得到17 670张图片,可以有效提高模型的泛化能力。将改进后的模型与ResNet34模型进行实验对比,实验结果表明,CBAM_ResNet34模型的分类准确率为88.1%,相比ResNet34提高了1.1%。该模型能够有效地对玉米病害进行分类识别,为玉米产业的发展和可持续利用提供了一种新的方法和思路。

  • 单位
    吉林化工学院; 一汽东机工减振器有限公司; 吉林农业科技学院