摘要

针对风机叶片表面缺陷检测识别率低、且易受光照影响的特点。提出一种基于卷积神经网络特征融合局部二值模式特征及核极限学习机的风机叶片表面缺陷检测方法。利用引入注意力机制的卷积神经网络提取图像深层次信息,然后提取描述图像浅层纹理信息的局部二值模式特征,采用主成分分析方法降低局部二值模式特征维度;将两种从不同层面描述图像的互补特征串行融合。用改进的麻雀搜索算法优化核极限学习机参数,利用融合的特征训练模型,得到最优模型进行缺陷识别。通过实验,在自建数据集训练后的分类准确率达到了97.5%,kappa系数达到95.1。相比利用单一特征检测,分类准确率有明显的提高。经风电场实际验证,本模型的平均分类准确率为96.3%,Kappa系数为94.5,漏报率明显降低。

全文