摘要

针对我国典型高寒山区——新疆天山中段玛纳斯河流域积雪-融雪过程模拟中气温空间数据的制备问题,以气象站点稀少的玛纳斯河流域为研究区域,利用最小二乘相关分析法开展了冬、春季(2015年11月-2016年4月)气温环境变量分析,通过共线性检测确定了纬度、海拔、坡度、坡向、NDVI 5个环境变量组成了最优因子集,构建了基于广义回归神经网络(GRNN)的月平均气温空间插值模型。采用区域内139个站点中的119个观测站点数据作为训练数据对GRNN模型进行训练,确定了冬、春季6个月的区域气温空间插值模型。利用剩余的20个观测站点数据作为检验样本,以均方根误差(RMSE)和平均相对误差(MRE)为评价指标,对模型的回归误差进行分析。结果表明:本模型6个月的平均RMSE值为1. 46,优于传统的地理加权回归克里金(GWRK)方法(其平均RMSE值为2. 22)。此外,从不同月份的气温空间插值分布图来看,本文模型空间插值后的气温变化趋势与实际变化趋势一致。从气温的空间分布情况来看,各空间点的气温与其海拔高程呈正相关,且随地表覆盖类型变化。这也表明本文提出的插值策略并组合建立的GRNN模型对于稀疏气象站点条件下的气温空间插值精度更高,一致性较好。

  • 单位
    长安大学; 中国气象局乌鲁木齐沙漠气象研究所; 地理信息工程国家重点实验室