摘要

针对视网膜血管形态结构复杂、特征信息多变的特点,提出一种结合残差网络和多尺度特征融合的U型视网膜分割算法。依次采用限制对比度直方图均衡化和局部自适应Gamma对原始视网膜图像进行预处理,得到血管增强、亮度提升的图像;将其输入至搭建的U型网络中进行端到端训练,该网络将U-Net原始卷积块替换为残差卷积块,实现对特征的复用,首尾的并行多分支结构和底部的金字塔池化结构扩大提取特征的感受野,在解码阶段加入带有注意力机制的跳跃连接改善视网膜血管的分割性能;通过sigmoid激活函数得到最终分割结果。在DRIVE数据集上进行实验,该算法准确率、敏感度和AUC分别为96.34%、84.61%和98.53%。