摘要

现有跨域人脸活体检测算法,其特征提取过程容易发生过拟合和缺乏特征聚合所导致的泛化性不足问题。针对该问题,本文提出了跨域人脸活体检测的单边对抗网络算法,首先,将分组卷积与改进的倒残差结构融合替换普通卷积,降低网络参数同时加强人脸细粒度特征的表达能力,并引入自适应特征归一化模块,强调图像中人脸活体信息区域淡化无关背景区域,有效避免人脸活体信息的过拟合并加强来自不同源域的人脸活体检测能力。其次,基于NetVLAD引入通道注意力机制模块,通道注意力机制模块作为特征聚合网络的分支,学习不同源域中人脸局部特征的语义信息,有效增强对不同源域的人脸活体信息分类的泛化能力。最后,设计两模块融合网络以提高未知场景下跨域人脸活体检测精度。在OULU-NPU、CASIA-FASD、MSU-MFSD和Idiap Replay-Attack数据集上的实验结果表明,本文算法在跨数据集测试O&C&M to I、O&C&I to M、I&C&M to O、O&M&I to C均有不错的表现,其中,在O&C&I to M及O&M&I to C性能评估指标分别提升了0.99%和0.5%的精度。