摘要
讨论基于自回归模型(AR模型)的时间序列数据中异常值探测的Bayes方法。该方法针对自回归模型引入不同类型的识别变量,通过比较这些识别变量的后验概率值与事先给定的阈值来进行异常值定位;基于Gibbs抽样算法,提出识别变量后验概率值的计算方法和异常值的估算方法;进行了大量的模拟试验并把该方法应用于卫星钟差实测数据的异常值探测,结果表明,该方法对于解决时间序列数据中在同一时刻或不同时刻出现加性异常值或革新异常值的探测问题是可行的和有效的。
-
单位信息工程大学测绘学院; 信息工程大学理学院